Contents

			xi
	Wha	t you should be able to do after reading and working through this book	xi
	Fun o	chapter titles	xii
	Addi	tional material for teaching and learning	xiii
Pa	rt 1:]	Fundamentals	1
1	Over	view	3
	1.1	The three challenges of statistics	3
	1.2	Why learn regression?	4
	1.3	Some examples of regression	5
	1.4	Challenges in building, understanding, and interpreting regressions	9
	1.5	Classical and Bayesian inference	13
	1.6	Computing least squares and Bayesian regression	16
	1.7	Bibliographic note	17
	1.8	Exercises	17
2	Data and measurement		
	2.1	Examining where data come from	21
	2.2	Validity and reliability	23
	2.3	All graphs are comparisons	25
	2.4	Data and adjustment: trends in mortality rates	31
	2.5	Bibliographic note	33
	2.6	Exercises	34
3	Som	e basic methods in mathematics and probability	35
	3.1	Weighted averages	35
	3.2	Vectors and matrices	36
	3.3	Graphing a line	37
	3.4	Exponential and power-law growth and decline; logarithmic and log-log relationships	38
	3.5	Probability distributions	40
	3.6	Probability modeling	45
	3.7	Bibliographic note	47
	3.8	Exercises	47
4	Statistical inference		
	4.1	Sampling distributions and generative models	49
	4.2	Estimates, standard errors, and confidence intervals	50
	4.3	Bias and unmodeled uncertainty	55
	4.4	Statistical significance, hypothesis testing, and statistical errors	57
	4.5	Problems with the concept of statistical significance	60
	4.6	Example of hypothesis testing: 55,000 residents need your help!	63
	4.7	Moving beyond hypothesis testing	66

CONTENTS

	4.8	Bibliographic note	67
	4.9	Exercises	67
5	Simulation		
	5.1	Simulation of discrete probability models	69
	5.2	Simulation of continuous and mixed discrete/continuous models	71
	5.3	Summarizing a set of simulations using median and median absolute deviation	73
	5.4	Bootstrapping to simulate a sampling distribution	73
	5.5	Fake-data simulation as a way of life	76
	5.6	Bibliographic note	76
	5.7	Exercises	76
Pa	rt 2:]	Linear regression	79
6	Back	ground on regression modeling	81
	6.1	Regression models	81
	6.2	Fitting a simple regression to fake data	82
	6.3	Interpret coefficients as comparisons, not effects	84
	6.4	Historical origins of regression	85
	6.5	The paradox of regression to the mean	87
	6.6	Bibliographic note	90
	6.7	Exercises	91
7	Line	ar regression with a single predictor	93
	7.1	Example: predicting presidential vote share from the economy	93
	7.2	Checking the model-fitting procedure using fake-data simulation	97
	7.3	Formulating comparisons as regression models	99
	7.4	Bibliographic note	101
	7.5	Exercises	101
8	Fitting regression models		
	8.1	Least squares, maximum likelihood, and Bayesian inference	103
	8.2	Influence of individual points in a fitted regression	107
	8.3	Least squares slope as a weighted average of slopes of pairs	108
	8.4	Comparing two fitting functions: lm and stan_glm	109
	8.5	Bibliographic note	111
	8.6	Exercises	111
9	Prediction and Bayesian inference 113		
	9.1	Propagating uncertainty in inference using posterior simulations	113
	9.2	Prediction and uncertainty: predict, posterior_linpred, and posterior_predict	115
	9.3	Prior information and Bayesian synthesis	119
	9.4	Example of Bayesian inference: beauty and sex ratio	121
	9.5	Uniform, weakly informative, and informative priors in regression	123
	9.6	Bibliographic note	128
	9.7	Exercises	128
10) Linear regression with multiple predictors		
		Adding predictors to a model	131
		Interpreting regression coefficients	133
		Interactions	134
		Indicator variables	136
	10.5	Formulating paired or blocked designs as a regression problem	139

VI

CONTENTS		
	10.6 Example: uncertainty in predicting congressional elections	140
	10.7 Mathematical notation and statistical inference	144
	10.8 Weighted regression	147
	10.9 Fitting the same model to many datasets	148
	10.10 Bibliographic note	149
	10.11 Exercises	149
11	Assumptions, diagnostics, and model evaluation	153
	11.1 Assumptions of regression analysis	153
	11.2 Plotting the data and fitted model	156
	11.3 Residual plots	161
	11.4 Comparing data to replications from a fitted model	163
	11.5 Example: predictive simulation to check the fit of a time-series model	166
	11.6 Residual standard deviation σ and explained variance R^2	168
	11.7 External validation: checking fitted model on new data	171
	11.8 Cross validation	172
	11.9 Bibliographic note	180
	11.10 Exercises	180
12	Transformations and regression	183
	12.1 Linear transformations	183
	12.2 Centering and standardizing for models with interactions	185
	12.3 Correlation and "regression to the mean"	187
	12.4 Logarithmic transformations	189
	12.5 Other transformations	195
	12.6 Building and comparing regression models for prediction	199
	12.7 Models for regression coefficients	206
	12.8 Bibliographic note	210
	12.9 Exercises	211
Pa	rt 3: Generalized linear models	215
12	Logistic regression	217
15	Logistic regression 13.1 Logistic regression with a single predictor	217
	13.2 Interpreting logistic regression coefficients and the divide-by-4 rule	217
	13.3 Predictions and comparisons	220
	13.4 Latent-data formulation	222
	13.5 Maximum likelihood and Bayesian inference for logistic regression	228
	13.6 Cross validation and log score for logistic regression	228
	13.7 Building a logistic regression model: wells in Bangladesh	230
	13.8 Bibliographic note	232
	13.9 Exercises	237
14	Working with logistic regression	241
	14.1 Graphing logistic regression and binary data	241
	14.2 Logistic regression with interactions	242
	14.3 Predictive simulation	247
	14.4 Average predictive comparisons on the probability scale	249
	14.5 Residuals for discrete-data regression	253
	14.6 Identification and separation	256
	14.7 Bibliographic note	259
	14.8 Exercises	259

15	Othe	r generalized linear models	263
	15.1	Definition and notation	263
	15.2	Poisson and negative binomial regression	264
	15.3	Logistic-binomial model	270
		Probit regression: normally distributed latent data	272
	15.5	Ordered and unordered categorical regression	273
	15.6	Robust regression using the <i>t</i> model	278
		Constructive choice models	279
	15.8	Going beyond generalized linear models	283
	15.9	Bibliographic note	286
		Exercises	286
Pa	rt 4: 1	Before and after fitting a regression	289
16	Desig	n and sample size decisions	291
	-	The problem with statistical power	291
		General principles of design, as illustrated by estimates of proportions	293
		Sample size and design calculations for continuous outcomes	297
		Interactions are harder to estimate than main effects	301
		Design calculations after the data have been collected	304
		Design analysis using fake-data simulation	306
		Bibliographic note	310
		Exercises	310
17	Posts	tratification and missing-data imputation	313
17		Poststratification: using regression to generalize to a new population	313
		Fake-data simulation for regression and poststratification	313
		Models for missingness	320
		Simple approaches for handling missing data	322
		Understanding multiple imputation	324
		Nonignorable missing-data models	320
		Bibliographic note	333
		Exercises	333
	17.8	Exercises	333
Part 5: Causal inference337			
18		al inference and randomized experiments	339
	18.1	Basics of causal inference	339
		Average causal effects	342
	18.3	Randomized experiments	345
	18.4		346
		Using additional information in experimental design	347
		Properties, assumptions, and limitations of randomized experiments	350
		Bibliographic note	355
	18.8	Exercises	356
19	Caus	al inference using regression on the treatment variable	363
	19.1	Pre-treatment covariates, treatments, and potential outcomes	363
	19.2	Example: the effect of showing children an educational television show	364
	19.3	Including pre-treatment predictors	367
	19.4	Varying treatment effects, interactions, and poststratification	370
	19.5	Challenges of interpreting regression coefficients as treatment effects	373
		Do not adjust for post-treatment variables	374

VIII

CC	CONTENTS			
	19.7	Intermediate outcomes and causal paths	376	
		Bibliographic note	379	
		Exercises	380	
20	Obse	ervational studies with all confounders assumed to be measured	383	
	20.1	The challenge of causal inference	383	
	20.2	Using regression to estimate a causal effect from observational data	386	
	20.3	Assumption of ignorable treatment assignment in an observational study	388	
		Imbalance and lack of complete overlap	391	
		Example: evaluating a child care program	394	
		Subclassification and average treatment effects	397	
		Propensity score matching for the child care example	399	
		Restructuring to create balanced treatment and control groups	405	
		Additional considerations with observational studies	413	
) Bibliographic note	416	
	20.1	Exercises	417	
21	Addi	tional topics in causal inference	421	
		Estimating causal effects indirectly using instrumental variables	421	
		Instrumental variables in a regression framework	427	
	21.3	Regression discontinuity: known assignment mechanism but no overlap	432	
	21.4	Identification using variation within or between groups	440	
	21.5	Causes of effects and effects of causes	445	
		Bibliographic note	449	
	21.7	Exercises	450	
Pa	rt 6: '	What comes next?	455	
22	Adva	anced regression and multilevel models	457	
	22.1	Expressing the models so far in a common framework	457	
	22.2	Incomplete data	458	
	22.3	Correlated errors and multivariate models	459	
		Regularization for models with many predictors	459	
		Multilevel or hierarchical models	460	
		Nonlinear models, a demonstration using Stan	460	
		Nonparametric regression and machine learning	464	
		Computational efficiency	467	
		Bibliographic note) Exercises	471 471	
AĮ	opend	ixes	473	
A	Com	puting in R	475	
	A.1	Downloading and installing R and Stan	475	
	A.2	Accessing data and code for the examples in the book	476	
	A.3	The basics	476	
	A.4	Reading, writing, and looking at data	481	
	A.5	Making graphs Washing with massy data	482	
	A.6	Working with messy data	484	
	A.7 A.8	Some R programming Working with rstanarm fit objects	488 490	
	A.8 A.9	Working with rstanarm fit objects Bibliographic note	490 492	
	11.1		T7	

CONTENTS

В	10 quick tips to improve your regression modeling		493
	B.1	Think about variation and replication	493
	B.2	Forget about statistical significance	493
	B.3	Graph the relevant and not the irrelevant	493
	B.4	Interpret regression coefficients as comparisons	494
	B.5	Understand statistical methods using fake-data simulation	494
	B.6	Fit many models	495
	B .7	Set up a computational workflow	495
	B.8	Use transformations	496
	B.9	Do causal inference in a targeted way, not as a byproduct of a large regression	496
	B.10	Learn methods through live examples	496
References		497	
Author Index			516
Su	Subject Index		

х